资源类型

期刊论文 4

年份

2023 3

2018 1

关键词

检索范围:

排序: 展示方式:

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1715-z

摘要:

● N2H4 addition enhanced and recovered anammox performance under Cr(VI) stress.

关键词: Extracellular Cr(VI) reduction     Electron transfer     Anammox     Hydrazine     Cr(VI) inhibition    

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 329-338 doi: 10.1007/s11705-018-1741-8

摘要:

Copper nanoparticles-decorated polyaniline-derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electrocatalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.

关键词: copper nanoparticles     mesoporous carbon     noble metal-free electrocatalyst     hydrazine oxidation reaction     polyaniline    

A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 24-33 doi: 10.1007/s11705-022-2171-1

摘要: Hydrazine is extremely toxic and causes severe harm to human body. Herein, a novel fluorescent probe 4-oxo-2-styryl-4H-chromen-3-yl thiophene-2-carboxylate (FHT) was synthesized for detecting hydrazine by using natural cinnamaldehyde as starting material. This probe exhibited significantly enhanced fluorescence response towards hydrazine over various common metal ions, anions, and amine compounds. The detection limit of probe FHT for hydrazine was as low as 0.14 μmol·L–1, significantly lower than that of the threshold value of 0.312 μmol·L–1, imposed by the Environmental Protection Agency. Moreover, the proposed probe was able to detect hydrazine within wide pH (5–10) and linear detection ranges (0–110 μmol·L–1). This probe was employed for determining trace hydrazine in different environmental water samples. The probe FHT-loaded filter paper strips were able to conveniently detect hydrazine of low concentration through distinct naked-eye and fluorescent color changes. Importantly, the probe FHT with low cytotoxicity was successfully applied to visualize hydrazine in living Hela cells and zebrafish.

关键词: cinnamaldehyde     3-hydroxychromone derivative     hydrazine     fluorescent probe    

Room temperature preparation of hydrazine-linked covalent organic frameworks coated capillaries for

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 548-556 doi: 10.1007/s11705-022-2252-1

摘要: Covalent organic frameworks (COFs) have been increasingly used in capillary electrochromatography due to their excellent characteristics. In this work, hydrazine-linked TFPB-DHzDS (TFPB: 1,3,5-tris(4-formylphenyl)benzene; DHzDS: 2,5-bis(3-(ethylthio)propoxy)terephthalohydrazide) was first synthesized by a simpler and easier method at room temperature and introduced into capillary electrochromatography as coating material. The TFPB-DHzDS coated capillaries were prepared by an in-situ growth process at room temperature. After optimizing the coating concentration and experimental conditions of capillary electrochromatography, baseline separation of two groups of polycyclic aromatic hydrocarbons was achieved based on the TFPB-DHzDS coated capillary. And the established method was used successfully to determine PAHs in natural water and soil samples. The spiked recoveries of polycyclic aromatic hydrocarbons in these samples ranged from 90.01% to 111.0%, indicating that the method is reliable and could detect polycyclic aromatic hydrocarbons in natural samples. Finally, molecular simulation was applied to study and visualize the interaction between the analytes and coating COF materials to investigate the molecular level separation mechanism further.

关键词: hydrazine-linked TFPB-DHzDS     in-situ growth method     open-tubular capillary electrochromatography     molecular simulations    

标题 作者 时间 类型 操作

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways

期刊论文

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

期刊论文

A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine

期刊论文

Room temperature preparation of hydrazine-linked covalent organic frameworks coated capillaries for

期刊论文